数学讲坛
发布于:2018-01-22 09:17:09   |   作者:[学院] 数学学院   |   浏览次数:742
时间:2018年1月25日(星期四)上午09:20
地址:清水河校区主楼A1-512
主办:数学学院
承办:数学学院
范围:全校

2. 报告题目:  Kinetics models of chemotaxis with temporal sensing mechanism: the parabolic limit and its dynamics

报告人:王治安 副教授(香港理工大学)

报告时间:2018年1月25日(星期四)上午09:20

报告地点:清水河校区主楼A1-512

报告摘要: It is well-known that the Keller-Segel type chemotaxis system can be derived as the parabolic limit of the kinetic model describing the velocity-jump process. When the tumbling kernel depends on the temporal gradient of chemical concentration, the rigorous parabolic limit of the kinetic model has not been completely understood. In this talk, we shall report a result for such scenario where the tumbling kernel depending on temporal gradient of chemical concentration is a decreasing smoothed stiff signal response function. We show that parabolic limit of the kinetic model with such tumbling kernel will result in a flux-limited chemotaxis system, which has some distinct features than the classical Keller-Segel model.

报告人简介:王治安,香港理工大学数学系副教授,研究方向是非线性偏微分方程,特别是生物数学中的偏微分方程;在M3AS、DCDS-A、DCDS-B、JDE、SIAM J. Math. Anal.、SIAM J. Appl. Math. 等杂志上发表SCI文章60余篇,H指数15; 获得多项香港研究基金资助。